Limousin (cattle)
From Wikipedia, the free encyclopedia
Limousin
From Wikipedia, the free encyclopedia
Limousin
Country of origin
France
Distribution
World-wide (about 70 countries)
Use
High yielding production of lean beef. Also crossbreeding.
Traits
Weight
Male: 1,000–1,100kg
Female: 650-700kg
Coat
Light wheat to darker golden-red. Black Limousins also bred.
Cattle
Bos (primigenius) taurus
Limousin cattle are a breed of highly muscled beef cattle originating from the Limousin and Marche regions of France. The breed is known as Limousine in France. Limousins were first exported from France in significant numbers in the 1960s and are now present in about 70 countries. They are naturally horned and have a distinctive lighter wheat to darker golden-red colouring, although international breeders have now bred polled (do not have horns) and black Limousins.
Initially used mainly as draft animals, interest in Limousins as a source of high quality meat grew about two hundred years ago. The first Limousin herd book was then established in France in 1886 to ensure the breed's purity and improvement by only recording and breeding animals that satisfied a strictly enforced breed standard.
Limousins have become popular because of their low birth weights (ease of calving), higher than average dressing percentage (ratio of carcase to live weight) and yield (ratio of meat to carcase), high feed conversion efficiency, and their ability to produce lean, tender meat. A major multi-breed study reported that Limousins converted feed into saleable meat more efficiently and significantly faster than popular British breeds, and marginally faster than other popular continental European cattle breeds. Conversely, the other cattle breeds produced proportionally more low-cost by-product and waste, which resulted in their live weight growth being faster than Limousins. Limousins are especially favoured for crossbreeding with cattle such as Angus, Hereford and Shorthorn because of their ability to contribute hybrid vigour, and improve the yield and feed conversion efficiency of these British breeds, which produce higher levels of fat and marbled meat.
History Origin The history of Limousin cattle begins in the period known as the Pleistocene (2.6 million to 12,000 years ago), when many megafauna roamed the Earth. One of the megafuana that survived until the 17th century was the aurochs, the distant ancestor of modern cattle.
France
Distribution
World-wide (about 70 countries)
Use
High yielding production of lean beef. Also crossbreeding.
Traits
Weight
Male: 1,000–1,100kg
Female: 650-700kg
Coat
Light wheat to darker golden-red. Black Limousins also bred.
Cattle
Bos (primigenius) taurus
Limousin cattle are a breed of highly muscled beef cattle originating from the Limousin and Marche regions of France. The breed is known as Limousine in France. Limousins were first exported from France in significant numbers in the 1960s and are now present in about 70 countries. They are naturally horned and have a distinctive lighter wheat to darker golden-red colouring, although international breeders have now bred polled (do not have horns) and black Limousins.
Initially used mainly as draft animals, interest in Limousins as a source of high quality meat grew about two hundred years ago. The first Limousin herd book was then established in France in 1886 to ensure the breed's purity and improvement by only recording and breeding animals that satisfied a strictly enforced breed standard.
Limousins have become popular because of their low birth weights (ease of calving), higher than average dressing percentage (ratio of carcase to live weight) and yield (ratio of meat to carcase), high feed conversion efficiency, and their ability to produce lean, tender meat. A major multi-breed study reported that Limousins converted feed into saleable meat more efficiently and significantly faster than popular British breeds, and marginally faster than other popular continental European cattle breeds. Conversely, the other cattle breeds produced proportionally more low-cost by-product and waste, which resulted in their live weight growth being faster than Limousins. Limousins are especially favoured for crossbreeding with cattle such as Angus, Hereford and Shorthorn because of their ability to contribute hybrid vigour, and improve the yield and feed conversion efficiency of these British breeds, which produce higher levels of fat and marbled meat.
History Origin The history of Limousin cattle begins in the period known as the Pleistocene (2.6 million to 12,000 years ago), when many megafauna roamed the Earth. One of the megafuana that survived until the 17th century was the aurochs, the distant ancestor of modern cattle.
Cave painting of aurochs at Lascaux, France.
Cave paintings estimated to be 17,300 years old of many figures, including aurochs, were discovered in 1940 in Lascaux in the Dordogne region of south-western France. Because of their appearance, the aurochs depicted in the paintings were popularly believed to have been the immediate ancestors of Limousins.
Three subspecies of aurochs are formally recognised, with the Eurasian subspecies reaching Europe about 250,000 years ago, where it survived until the 17th century.. Eurasian aurochs were also domesticated into cattle breeds of European form (Bostaurus, also known as Bosprimigeniustaurus) commencing about 8,000 years ago in a region known as the Fertile Crescent in the Near East. These cattle began to enter Europe during and after the Neolithic expansion.
Recent studies of the DNA of European cattle and fragments of Eurasian aurochs, in particular female mitochondrial DNA and male Y chromosomes, indicate that the link between modern Limousins and their presumed Eurasian aurochs ancestors is more complex than originally thought. While many European cattle breeds probably evolved from domesticated Near East ancestors, their genetics were heavily influenced by different herd management approaches across Europe.
Analysis of central European cattle, including Limousins, indicates that the origin of male and female DNA can be traced directly to cattle domesticated in the Near East. This is in contrast to the DNA of northern European cattle, which suggests that wild Eurasian aurochs were at one time mated to domesticated cows, and of southern European cattle, which indicates that wild Eurasian aurochs cows were mated to domesticated bulls.
DNA studies have identified close genetic relationships between Limousin cattle and other south-west European breeds. One study reported a possible common origin or recent gene flow between the Limousin and Charolais cattle breeds whereas other studies indicated that a closer genetic relationship exists between Limousin, Gasconne, Aubrac, Bazadaise, Salers, and Blonde d'Aquitaine cattle.
One historian reported that the Limousin breed's origins can be traced to the blonde Garonne breed in the 5th century AD. The Garonne breed from the south-west of France was merged into the Blonde d'Aquitaine breed in 1962. The grey Gasconne breed with which Limousin cattle have a close genetic relationship is also reported to have arrived in the south-west of France with the Visigoths also around the 5th century AD.
Limousin cattle are identified as members of an "intensively selected" "blond and red" branch of hardy, heavily muscled and fine-boned working cattle found in south-west Europe. The branch, which is one of several that have influenced cattle breeding in France, comprises a number of Spanish, Portuguese, and French cattle breeds, which possibly evolved from those introduced during a past occupation of Iberia. No scientific studies have been published that identify the origins of, or demonstrate a possible common ancestral link between, all "blond and red" family members.
Limousin cattle evolved in the French region now known as Limousin. The region comprises the historical French provinces of Limousin and Marche, which include the departments of Corrèze in its entirety, most of Creuse, and parts of Haute-Vienne. Limousin cattle adapted to the local hilly conditions of acidic soils and weakly mineralised granite, with large variations in temperature. These factors led to the development of a hardy breed with an unusually thin but solid bone.
The purest form of Limousins have ancestors that can all be traced to Full French entries in the French Limousin Herd Book (known in France as Le livregénéalogique). These Limousins are known by different names. In the USA and Canada they are known as Fullbloods, in Australia and New Zealand as French Pure, and in European countries such as Britain as Pure Bred (also purebred) or simply Limousin.
In France, two Full French Herd Book classes exist, namely Pureblood (pur sang in French, also translated to Fullblood) and Pure Bred (race pure in French). The Full French Pure Bred Herd Book class, as with all European Union (EU) member countries' herd books, is controlled by EU legislation.
Cave paintings estimated to be 17,300 years old of many figures, including aurochs, were discovered in 1940 in Lascaux in the Dordogne region of south-western France. Because of their appearance, the aurochs depicted in the paintings were popularly believed to have been the immediate ancestors of Limousins.
Three subspecies of aurochs are formally recognised, with the Eurasian subspecies reaching Europe about 250,000 years ago, where it survived until the 17th century.. Eurasian aurochs were also domesticated into cattle breeds of European form (Bostaurus, also known as Bosprimigeniustaurus) commencing about 8,000 years ago in a region known as the Fertile Crescent in the Near East. These cattle began to enter Europe during and after the Neolithic expansion.
Recent studies of the DNA of European cattle and fragments of Eurasian aurochs, in particular female mitochondrial DNA and male Y chromosomes, indicate that the link between modern Limousins and their presumed Eurasian aurochs ancestors is more complex than originally thought. While many European cattle breeds probably evolved from domesticated Near East ancestors, their genetics were heavily influenced by different herd management approaches across Europe.
Analysis of central European cattle, including Limousins, indicates that the origin of male and female DNA can be traced directly to cattle domesticated in the Near East. This is in contrast to the DNA of northern European cattle, which suggests that wild Eurasian aurochs were at one time mated to domesticated cows, and of southern European cattle, which indicates that wild Eurasian aurochs cows were mated to domesticated bulls.
DNA studies have identified close genetic relationships between Limousin cattle and other south-west European breeds. One study reported a possible common origin or recent gene flow between the Limousin and Charolais cattle breeds whereas other studies indicated that a closer genetic relationship exists between Limousin, Gasconne, Aubrac, Bazadaise, Salers, and Blonde d'Aquitaine cattle.
One historian reported that the Limousin breed's origins can be traced to the blonde Garonne breed in the 5th century AD. The Garonne breed from the south-west of France was merged into the Blonde d'Aquitaine breed in 1962. The grey Gasconne breed with which Limousin cattle have a close genetic relationship is also reported to have arrived in the south-west of France with the Visigoths also around the 5th century AD.
Limousin cattle are identified as members of an "intensively selected" "blond and red" branch of hardy, heavily muscled and fine-boned working cattle found in south-west Europe. The branch, which is one of several that have influenced cattle breeding in France, comprises a number of Spanish, Portuguese, and French cattle breeds, which possibly evolved from those introduced during a past occupation of Iberia. No scientific studies have been published that identify the origins of, or demonstrate a possible common ancestral link between, all "blond and red" family members.
Limousin cattle evolved in the French region now known as Limousin. The region comprises the historical French provinces of Limousin and Marche, which include the departments of Corrèze in its entirety, most of Creuse, and parts of Haute-Vienne. Limousin cattle adapted to the local hilly conditions of acidic soils and weakly mineralised granite, with large variations in temperature. These factors led to the development of a hardy breed with an unusually thin but solid bone.
The purest form of Limousins have ancestors that can all be traced to Full French entries in the French Limousin Herd Book (known in France as Le livregénéalogique). These Limousins are known by different names. In the USA and Canada they are known as Fullbloods, in Australia and New Zealand as French Pure, and in European countries such as Britain as Pure Bred (also purebred) or simply Limousin.
In France, two Full French Herd Book classes exist, namely Pureblood (pur sang in French, also translated to Fullblood) and Pure Bred (race pure in French). The Full French Pure Bred Herd Book class, as with all European Union (EU) member countries' herd books, is controlled by EU legislation.
English translation of score sheet used by French assessors to determine if an animal is of appropriate quality to be certified Full French and recorded in the Herd Book.
Full French is a term used by the French Limousin breeders' association (known in France as Herd Book Limousin, abbreviated to HBL) to describe cattle that comply with the following:
Crossbreeding with Limousins Crossbreeding increases production efficiency because of hybrid vigour, and allows complementary traits of parents to be combined to produce progeny better suited to different environments or markets. Crossbreeding through the use of Limousin terminal sires in purebred British breed cow herds allows the complementary traits of higher marbling and fat cover provided by the British breed cows, and required or preferred by some markets,to be combined with the higher yield and feed conversion efficiency of Limousin sires.
Crossbred cows produce up to, and in some cases in excess of, 20% more weaned calf weight as a result of increased reproductive performance and maternal ability. Crossbred cow longevity is also increased by up to two years when compared with straightbred cows. However, the benefits of hybrid vigour in a crossbred cow decline in subsequent generations if progeny are mated to cattle of parentage similar to the cow, and increase if a new breed is introduced. Although studies acknowledge that the major production benefits of hybrid vigour occur in crossbred cow herds,the main use of Limousins outside of Europe continues to be as terminal sires in purebred British breed cow herds.
Genetic basis for crossbreeding Progeny of two parents of different breeds are termed F1 hybrids, F1 crosses or first crosses. F1 hybrids generally have an extremely uniform phenotype and benefit from hybrid vigour. These advantages are observed in the breeding of a wide variety of animals and plants, and arise because progeny inherit one of each paired gene from each parent. When both parents are homozygous for different variants of genes (known as alleles), which is likely to be the case when a breed has been developed and selected over several generations, progeny will inherit both gene variants present in the parents. The F1 hybrid progeny will then be heterozygous for each gene variant, which in turn increases the likelihood that the genes will code for an optimal protein or enzyme. This is the genetic basis of hybrid vigour. While many gene variants have effects that are of little consequence to beef production, a few, such as the myostatin variants found in different cattle breeds, have a major effect.
Loss of hybrid vigour occurs and phenotype varies greatly in subsequent generations if F1 hybrids are inter-bred or backcrossed with animals genetically similar to the F1 parent. Inter-bred F1 hybrids will produce progeny that can be either heterozygous for each gene variant, homozygous for one gene variant, or homozygous for the other gene variant. When one of the variants has a large effect on a trait, for example the effect of myostatin variants on muscularity, larger phenotypic variation will occur among the progeny. Backcross progeny will have less phenotypic variation and comprise animals that are either heterozygous for each gene variant or homozygous for the variant found in the original F1 backcross parent.
A third form of progeny arises when F1 hybrids are bred with animals genetically dissimilar to their parents. If heterozygosity is maintained or increased as a result, hybrid vigour and other production benefits occurring in the F1 generation will be maintained or increased. Maintenance of heterozygosity is the key to maintaining the highest levels of hybrid vigour. This requires complex breeding programs and high levels of management. Simplified crossbreeding programs have been developed using hybrid or composite bulls, which was the motivation behind the development of Lim-Flex hybrids.
The two major Limousin hybrids are Brahmousin (a cross between Brahman and Limousin cattle)) and Lim-Flex (a cross between Angus and Limousin cattle), which were both developed before the significance of the F94L myostatin variant had been quantified. When Limousins homozygous for the F94L myostatin mutation are used in crossbreeding, only one of the mutations will be inherited (that is, progeny will be heterozygous for the mutation), and a high level of phenotypic uniformity and hybrid vigour would be expected in the progeny. However, breeding using heterozygous animals as parents, which could include purebred Limousins of low percentage Full French content, and Lim-Flex and Brahmousin hybrids that have not been bred to a uniform (homozygous) standard over several generations, would produce progeny with inconsistent carcase characteristics and production value depending upon whether or not the F94L mutation was inherited.
The use of Lim-Flex and Brahmousin sires over a third breed of cow would benefit most from increased hybrid vigour, which should minimise any reduction in carcase value arising from the loss of the F94L mutation.
According to research into the effects of the F94L mutation, live weights of progeny are unaffected by random inheritance of the mutation.
Brahmousin Brahmousin cattle are a hybrid purebred breed of Brahman and Limousin first created in the USA in the late 1970s. The goal was to blend the best of the Limousin and Brahman traits to create a breed that has reproductive efficiency, mothering ability, good muscling and growth traits, and is adaptable to varying environmental conditions. Brahmousin are now bred in the USA, Indonesia, El Salvador and Australia.
The first Brahmousin cattle were produced from a multiple embryo transfer from a French-imported Limousin dam. The resulting progeny were then crossed with Brahman cattle to achieve an F1 hybrid. Further crosses over a broader base led to the production of the 5/8 Limousin – 3/8 BrahmanBrahmousin purebred, a mix which has been found to be the most widely accepted and most useful for the majority of the USA. The American Brahmousin Council allows animals that are not purebred to be recorded as percentage animals as long as they are at least one-quarter Limousin and one-quarter Brahman. In order to be recorded as a purebred Brahmousin, the animal must then be sired by a registered purebred or fullbloodLimousin bull, registered Brahman bull or a registered purebred Brahmousin bull.
In Australia, Brahmousin are between one quarter and three quarters of the parent breeds with the objective of combining the muscle growth and meat quality of Limousins with the heat and parasite resistance, fast growth and good mothering ability of the Brahman. Brahmousin is formally recognised as a cattle breed in Australia.
Lim-Flex Unlike the Brahmousin, Lim-Flex does not have purebred breed status in any participating countries, which includes the USA, Australia, New Zealand, and Canada. The need for the Lim-Flex hybrid arose in 2000 out of a perceived need by North American commercial cattle breeders for hybrid bulls that would assist in achieving end-product targets.
Lim-Flex is a registered certification mark awarded to Limousin:Angus crossbred or hybrid cattle in the USA with content between 25% and 75% Limousin pedigree blood, and between 25% and 75% of either Angus or Red Angus pedigree blood, with a maximum allowable 1/8th of unknown or other breed. Lim-Flex provide genetic options ranging from high content fullblood and purebred Limousin with high levels of muscle and efficiency, to blended options with higher marbling and maternal characteristics associated with Angus cattle, to meet the needs of crossbreeding programs.
The Lim-Flex certification mark has been adopted in Australia and New Zealand, where "commercial Lim-Flex must be 25 to 75 percent Limousin and 25 to 75 percent Angus or Red Angus", and in Canada, where they "must be between 37.5 to 75 percent Limousin and 25 to 62.5 percent Angus or Red Angus, with a maximum allowance of another breed or unknown breed composition of 12.5 percent (1/8th)"
Full French is a term used by the French Limousin breeders' association (known in France as Herd Book Limousin, abbreviated to HBL) to describe cattle that comply with the following:
- Have been bred by French active member-associates of the HBL. The strictly enforced rules of the HBL require breeders to conduct on-farm performance testing of their animals and to have selected animals independently tested by approved official bodies.
- Have been independently inspected and certified to be Full French according to the Breed Standard.
- Cattle excluded from Full French certification include those imported into France, cattle that are polled (in French sans corne), and cattle that have undesirable double muscling genes (in French gene culard) inherited from non-Limousin base animals.
Crossbreeding with Limousins Crossbreeding increases production efficiency because of hybrid vigour, and allows complementary traits of parents to be combined to produce progeny better suited to different environments or markets. Crossbreeding through the use of Limousin terminal sires in purebred British breed cow herds allows the complementary traits of higher marbling and fat cover provided by the British breed cows, and required or preferred by some markets,to be combined with the higher yield and feed conversion efficiency of Limousin sires.
Crossbred cows produce up to, and in some cases in excess of, 20% more weaned calf weight as a result of increased reproductive performance and maternal ability. Crossbred cow longevity is also increased by up to two years when compared with straightbred cows. However, the benefits of hybrid vigour in a crossbred cow decline in subsequent generations if progeny are mated to cattle of parentage similar to the cow, and increase if a new breed is introduced. Although studies acknowledge that the major production benefits of hybrid vigour occur in crossbred cow herds,the main use of Limousins outside of Europe continues to be as terminal sires in purebred British breed cow herds.
Genetic basis for crossbreeding Progeny of two parents of different breeds are termed F1 hybrids, F1 crosses or first crosses. F1 hybrids generally have an extremely uniform phenotype and benefit from hybrid vigour. These advantages are observed in the breeding of a wide variety of animals and plants, and arise because progeny inherit one of each paired gene from each parent. When both parents are homozygous for different variants of genes (known as alleles), which is likely to be the case when a breed has been developed and selected over several generations, progeny will inherit both gene variants present in the parents. The F1 hybrid progeny will then be heterozygous for each gene variant, which in turn increases the likelihood that the genes will code for an optimal protein or enzyme. This is the genetic basis of hybrid vigour. While many gene variants have effects that are of little consequence to beef production, a few, such as the myostatin variants found in different cattle breeds, have a major effect.
Loss of hybrid vigour occurs and phenotype varies greatly in subsequent generations if F1 hybrids are inter-bred or backcrossed with animals genetically similar to the F1 parent. Inter-bred F1 hybrids will produce progeny that can be either heterozygous for each gene variant, homozygous for one gene variant, or homozygous for the other gene variant. When one of the variants has a large effect on a trait, for example the effect of myostatin variants on muscularity, larger phenotypic variation will occur among the progeny. Backcross progeny will have less phenotypic variation and comprise animals that are either heterozygous for each gene variant or homozygous for the variant found in the original F1 backcross parent.
A third form of progeny arises when F1 hybrids are bred with animals genetically dissimilar to their parents. If heterozygosity is maintained or increased as a result, hybrid vigour and other production benefits occurring in the F1 generation will be maintained or increased. Maintenance of heterozygosity is the key to maintaining the highest levels of hybrid vigour. This requires complex breeding programs and high levels of management. Simplified crossbreeding programs have been developed using hybrid or composite bulls, which was the motivation behind the development of Lim-Flex hybrids.
The two major Limousin hybrids are Brahmousin (a cross between Brahman and Limousin cattle)) and Lim-Flex (a cross between Angus and Limousin cattle), which were both developed before the significance of the F94L myostatin variant had been quantified. When Limousins homozygous for the F94L myostatin mutation are used in crossbreeding, only one of the mutations will be inherited (that is, progeny will be heterozygous for the mutation), and a high level of phenotypic uniformity and hybrid vigour would be expected in the progeny. However, breeding using heterozygous animals as parents, which could include purebred Limousins of low percentage Full French content, and Lim-Flex and Brahmousin hybrids that have not been bred to a uniform (homozygous) standard over several generations, would produce progeny with inconsistent carcase characteristics and production value depending upon whether or not the F94L mutation was inherited.
The use of Lim-Flex and Brahmousin sires over a third breed of cow would benefit most from increased hybrid vigour, which should minimise any reduction in carcase value arising from the loss of the F94L mutation.
According to research into the effects of the F94L mutation, live weights of progeny are unaffected by random inheritance of the mutation.
Brahmousin Brahmousin cattle are a hybrid purebred breed of Brahman and Limousin first created in the USA in the late 1970s. The goal was to blend the best of the Limousin and Brahman traits to create a breed that has reproductive efficiency, mothering ability, good muscling and growth traits, and is adaptable to varying environmental conditions. Brahmousin are now bred in the USA, Indonesia, El Salvador and Australia.
The first Brahmousin cattle were produced from a multiple embryo transfer from a French-imported Limousin dam. The resulting progeny were then crossed with Brahman cattle to achieve an F1 hybrid. Further crosses over a broader base led to the production of the 5/8 Limousin – 3/8 BrahmanBrahmousin purebred, a mix which has been found to be the most widely accepted and most useful for the majority of the USA. The American Brahmousin Council allows animals that are not purebred to be recorded as percentage animals as long as they are at least one-quarter Limousin and one-quarter Brahman. In order to be recorded as a purebred Brahmousin, the animal must then be sired by a registered purebred or fullbloodLimousin bull, registered Brahman bull or a registered purebred Brahmousin bull.
In Australia, Brahmousin are between one quarter and three quarters of the parent breeds with the objective of combining the muscle growth and meat quality of Limousins with the heat and parasite resistance, fast growth and good mothering ability of the Brahman. Brahmousin is formally recognised as a cattle breed in Australia.
Lim-Flex Unlike the Brahmousin, Lim-Flex does not have purebred breed status in any participating countries, which includes the USA, Australia, New Zealand, and Canada. The need for the Lim-Flex hybrid arose in 2000 out of a perceived need by North American commercial cattle breeders for hybrid bulls that would assist in achieving end-product targets.
Lim-Flex is a registered certification mark awarded to Limousin:Angus crossbred or hybrid cattle in the USA with content between 25% and 75% Limousin pedigree blood, and between 25% and 75% of either Angus or Red Angus pedigree blood, with a maximum allowable 1/8th of unknown or other breed. Lim-Flex provide genetic options ranging from high content fullblood and purebred Limousin with high levels of muscle and efficiency, to blended options with higher marbling and maternal characteristics associated with Angus cattle, to meet the needs of crossbreeding programs.
The Lim-Flex certification mark has been adopted in Australia and New Zealand, where "commercial Lim-Flex must be 25 to 75 percent Limousin and 25 to 75 percent Angus or Red Angus", and in Canada, where they "must be between 37.5 to 75 percent Limousin and 25 to 62.5 percent Angus or Red Angus, with a maximum allowance of another breed or unknown breed composition of 12.5 percent (1/8th)"